古谷数学教室第19回

統計的な推測1

2025年9月3日

1 基礎事項

1.1 確率変数と確率分布

試行の結果によってその値が定まり、各値に対応して確率が定まるような変数を**確率変数**という。

一般に、確率変数 X のとりうる値が x_1, x_2, \dots, x_n であり、それぞれの値をとる確率が p_1, p_2, \dots, p_n であるとき、次のことが成り立つ:

$$p_1 \ge 0, \ p_2 \ge 0, \ \cdots, \ p_n \ge 0,$$

$$\sum_{k=1}^{n} p_k = 1.$$

確率変数 X のとりうる値とその値をとる確率との対応関係は、表 1 のように書き表される。この

表 1 確率変数 X の確率分布表

対応関係を、Xの確率分布または分布といい、確率変数 X はこの分布に従うという。

確率変数 X が値 a をとる確率を P(X=a) で表す。X が a 以上 b 以下の値をとる確率を $P(a \le X \le b)$ で表す。

1.2 確率変数の期待値と分散

確率変数 X の確率分布が表 1 で与えられているとする。このとき、

$$\sum_{k=1}^{n} x_k p_k$$

を、X の期待値または平均といい、E(X) またはm で表す $^{1)}$ 。

¹⁾ E(X) の E は、期待値を意味する英語 expectation の頭文字、m は平均を意味する mean の頭文字である。

確率変数 X の確率分布が表 1 で与えられているとする。a、b を定数とするとき、X に対して aX+b も確率変数であり、その分布は表 2 のようになる。よって、aX+b の期待値は、明らかに

表 2 確率変数 aX + b の確率分布表

aX + b	$ax_1 + b$	$ax_2 + b$	 $ax_n + b$	計
P	p_1	p_2	 p_n	1

次のようになる:

aX + b の期待値

$$E(aX + b) = aE(X) + b.$$

確率変数 X に対して、 X^2 もまた確率変数である (表 3 を参考)。このとき、確率変数 X^2 の期待

表 3 確率変数 X^2 の確率分布表

X	x_1^2	x_{2}^{2}	 x_n^2	計
P	p_1	p_2	 p_n	1

値は、次の式で与えられる:

$$E(X^2) = \sum_{k=1}^{n} x_k^2 p_k.$$

確率変数 X の確率分布が表 1 で与えられているとする。X の期待値を m とするとき、確率変数 $(X-m)^2$ の期待値

$$\sum_{k=1}^{n} (x_k - m)^2 p_k$$

を、X の分散といい、V(X) で表す $^{2)}$ 。明らかに次のことが成り立つ:

分散と期待値

$$V(X) = E(X^2) - \left\{ E(X) \right\}^2.$$

確率変数 X について、X の分散 V(X) の正の平方根 $\sqrt{V(X)}$ を、X の標準偏差といい、 $\sigma(X)$ で表す $^{3)}$ 。

確率変数 X の期待値、分散、標準偏差をそれぞれ X の分布の平均、分散、標準偏差ともいう。 標準偏差 $\sigma(X)$ は、X の分布の平均 m を中心として、X のとる値の散らばる傾向の程度を表している。標準偏差 $\sigma(X)$ の値が小さければ小さいほど、X のとる値は、平均 m の近くに集中する傾向にある。

²⁾ V(X) の V は、分散を意味する英語 variance の頭文字である。

³⁾ $\sigma(X)$ の σ は、標準偏差を意味する英語 standard deviation の頭文字 s に相当するギリシャ文字である。

1.3 確率変数の和と積

2つの確率変数 X、Y について、一般に、次のことが成り立つ:

確率変数の和の期待値

$$E(X+Y) = E(X) + E(Y). \tag{1}$$

3つ以上の確率変数の和の期待値についても、2つの場合と同様なことが成り立つ。

2つの確率変数 X、Y と定数 a、b について、aX+bY も確率変数であり、次のことが成り立つ:

$$E(aX + bY) = aE(X) + bE(Y).$$

2つの確率変数 X、Y を考える。X のとる値 a と Y のとる値 b に対して、

$$P(X = a, Y = b) = P(X = a) \cdot P(Y = b)$$

が a、b のとり方に関係なく常に成り立つとき、確率変数 X、Y は互いに**独立**であるという。とくに、2 つの試行 S と T が独立のとき、S の結果によって定まる確率変数 X と T の結果によって定まる確率変数 Y は独立である。

一般に、確率変数 X、Y について、次のことが成り立つ:

独立な2つの確率変数の積の期待値

2つの確率変数 X、Y が互いに独立であるとき

$$E(XY) = E(X)E(Y). (2)$$

また、次のことも成り立つ:

独立な2つの確率変数

2つの確率変数 X、Y が互いに独立であるとき

$$V(X+Y) = V(X) + V(Y). \tag{3}$$

3つ以上の確率変数の独立についても、2つの場合と同様に定義する。

2 例題

- 1. 白玉 2 個と黒玉 3 個入った袋から、3 個の玉を同時に取り出すとき、出る白玉の個数を X とする。 X の確率分布を求めよ。
- **2.** 確率分布が表 1 で与えられる確率変数 X と任意の実数 a, b について、確率変数 aX+b の確率分布を求めよ。また、E(aX+b)=aE(X)+b を示せ。
- **3.** 確率分布が表 1 で与えられる確率変数 X について、確率変数 X^2 の確率分布を求めよ。
- 4. $V(X) = E(X^2) \{E(X)\}^2$ を示せ。

3 演習問題

- 1. 3 枚の硬貨を同時に投げるとき、表の出る枚数を X とする。
 - (1) 確率変数 X の確率分布を求めよ。
 - (2) $P(2 \le X \le 3)$ を求めよ。
- 2. 下の確率分布に従う変数 X について、次の値を求めよ。

X	1	2	3	4	計
Р	$\frac{1}{3}$	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{1}{12}$	1

- (1) 期待值
- (2) 分散
- (3) 標準偏差
- **3.** 1 個のさいころを 3 回投げるとき、3 の倍数の目が出た回数 X の期待値、分散、標準偏差を求めよ。
- **4.** 1 個のさいころを投げて出た目を X とするとき、確率変数 3X-1 の期待値、分散、標準偏差を求めよ。
- 5. 確率変数 X の期待値を m、標準偏差を σ とするとき、確率変数 $\frac{X-m}{\sigma}$ の期待値と標準偏差を求めよ。
- **6.** 2 枚の硬貨を同時に投げる試行を 2 回行う。1 回目の試行で表の出る枚数を X、2 回目の試行で表の出る枚数を Y とするとき、X と Y の同時分布を求めよ。
- 7. 次の事象 A、B は独立であるか、従属であるか答えよ。
 - (1) ジョーカーを除く 1 組 52 枚のトランプ S, T から 1 枚抜き出すとき、

A: S から 1 枚抜き出しハートが出る, B: T から 1 枚抜き出しエースが出る.

(2) 1から9までの9個の整数から1個の整数を選ぶとき、

A: 奇数を選ぶ、 B:5以下を選ぶ.

8. 硬貨とさいころを同時に投げるとき、硬貨で表が出たら 1、裏が出たら 0 となる確率変数を X とし、さいころの出た目の数を Y とする。このとき、確率変数 XY の期待値を求めよ。

4 おまけ

式 (1) を示す。確率変数 X、Y の確率分布は、自然数 n、m を用いて、それぞれ表 1、表 4 で与えられるとする。

表 4 確率変数 Y の確率分布

Y	y_1	•••	y_m	計
P	q_1		q_m	1

 $1 \le k \le n$ 、 $1 \le l \le m$ を満たすすべての自然数 k、l を用いて、 $P(X=x_k,\ Y=y_l)=r_{k,l}$ とする $^{4)}$ 。このとき、確率変数 X+Y の確率分布は、次の表で与えられる:

表 5 確率変数 Y + Y の確率分布

X + Y	$x_1 + y_1$	$x_1 + y_2$	 $x_1 + y_m$	$x_2 + y_1$	 $x_2 + y_m$	 $x_n + y_m$	計
P	$r_{1,1}$	$r_{1,2}$	 $r_{1,m}$	$r_{2,1}$	 $r_{2,m}$	 $r_{n,m}$	1

以上から、

$$E(X + Y) = \sum_{k=1}^{n} \sum_{l=1}^{m} (x_k + y_l) r_{k,l}$$

$$= \sum_{k=1}^{n} \sum_{l=1}^{m} (x_k r_{k,l} + y_l r_{k,l})$$

$$= \sum_{k=1}^{n} x_k p_k + \sum_{l=1}^{m} y_l q_l$$

$$= E(X) + E(Y) \quad \blacksquare$$

ただし、次の式を用いた:

$$\sum_{l=1}^{m} r_{k,l} = p_k,\tag{4}$$

$$\sum_{k=1}^{n} r_{k,l} = q_m. \tag{5}$$

3つ以上の確率変数の和の期待値についても同様である。

2の確率変数 X、Y と定数 a、b について、aX + bY も確率変数であり、次のことが成り立つ:

期待値の公式

$$E(aX + bY) = aE(X) + bE(Y). (6)$$

4) X = a かつ Y = b である確率を P(X = a, Y = b) で表す。

式 (6) を示す。

$$E(aX + bY) = E(aX) + E(bY) \quad (\because \vec{x}(1))$$

= $aE(X) + bE(Y) \quad \blacksquare$

ただし、次の式を用いた:

$$E(aX) = aE(X).$$

式 (2) を示す。

確率変数 X、Y の確率分布は、自然数 n、m を用いて、それぞれ表 1、表 4 で与えられるとする。 このとき、確率変数 XY の確率分布は表 6 で与えられる:よって、

表 6 確率変数 YY の確率分布

	TT.		 		 		
XY	x_1y_1	x_1y_2	 x_1y_m	x_2y_1	 x_2y_m	 $x_n y_m$	計
P	p_1q_1	p_1q_2	 p_1q_m	p_2q_1	 p_2q_m	 p_nq_m	1

$$E(XY) = \sum_{k=1}^{n} \sum_{l=1}^{m} x_k y_l p_k q_l$$
$$= \sum_{k=1}^{n} p_k \sum_{l=1}^{m} y_l q_l$$
$$= E(X)E(Y) \blacksquare$$

式 (3) を示す。

確率変数 X、Y の確率分布は、自然数 n、m を用いて、それぞれ表 1、表 4 で与えられるとする。 このとき、確率変数 X+Y の確率分布は表 5 で与えられる。ただし、 $1 \le k \le n$ 、 $1 \le l \le m$ を満たすすべての自然数 k、l について、

$$r_{k,l} = p_k q_l$$

が成り立つ。よって、